

25 Avenue des Saules (Métro B) - 69600 OULLINS - France

8 Rue Jean Jaurès - 35000 RENNES - France

Tél. +33 (0)4 37 41 16 10 * Fax +33 (0)4 72 30 13 36

Tél. +33 (0)2 30 02 79 98

info@rg-consultant.com www.rg-consultant.com

ÉTUDE TECHNIQUE FOUDRE

ROSTRENEN (22)

Révision B

Page 1/30

ÉTUDE TECHNIQUE FOUDRE

ROSTRENEN (22)

Référence document RGC 22056

RESUME:

Ce document représente le dossier d'Etude Technique Foudre d'un projet de bâtiment industriel de la société **APROBOIS**, situé sur la commune de **ROSTRENEN** dans le département des **Côtes** d'Armor (22).

L'objectif est de rendre les installations ICPE en conformité vis-à-vis de l'article 2 de l'arrêté du 19 juillet 2011.

Il comprend : l'Etude Technique des spécifications de la protection contre les effets <u>directs</u> et <u>indirects</u> de la foudre, les mesures de prévention, ainsi qu'un tableau de synthèse des actions à entreprendre, qu'elles soient obligatoires ou optionnelles.

Rédacteur	Vérification	Approbation	Révision
Nom : Martin GOIFFON	Nom : Vincent GRAS	Nom : Françoise BOUSQUET	
Date : 26/01/2015	Date : 29/01/2015	Date : 29/01/2015	
Visa	Visa	Visa	В
	Contract of the contract of th	June W	

<u>Diffusion</u>: **UTILITIES PERFORMANCE**

12, rue Olivier Serres 49070 BEAUCOUZE Tel:+33241272365 g.veillon@utilities-performance.com RG Consultant

1 ex.

25 Avenue des Saules 69600 Oullins Tél: 04 37 41 16 10 Fax 04 72 30 13 36

Email: info@rg-consultant.com

RG Consultant Agence Arc Atlantique

 8 rue Jean Jaurès
 Archive

 35000 RENNES
 papier

 Tél : 02 30 02 79 98
 et

 informa

Email: info@rg-consultant.com

Révision B

Page 2/30

Rév	Chrono secrétariat	Date	Objet
А	RGC 22056	26/01/2015	Étude Technique
В	RGC 22056	30/01/2015	Révision suivant demandes Mr VEILLON

LISTE DES DOCUMENTS FOURNIS PAR <u>UTILITIES PERFORMANCE</u>

INTITULE	N% Fournis
Plans de masse	Oui
Vue en coupe	Non
Liste des rubriques ICPE	Oui
DDE	Non
Synoptique électrique	Oui
Zonage ATEX	Non
Descriptif général du projet	GVe/YCa
Analyse de Risque Foudre	RGC 22055

L'ARF ci-après a été réalisée selon les informations et plans fournis par **UTILITIES PERFORMANCE**, commanditaire de cette étude. Il appartient au destinataire de l'étude de vérifier que les hypothèses prises en compte et énumérées dans le descriptif ci-après sont correctes et exhaustives.

Révision B

Page 3/30

SOMMAIRE

1.	INTRODUCTION	5
1.	.1 Овјет	5
1.		
2.	DOCUMENTS RÈGLEMENTAIRES	8
2. 2.		_
3.	MÉTHODOLOGIE	9
3.	.1 Presentation generale	9
3.	2 LIMITE DE L'ÉTUDE TECHNIQUE	9
4.	CONCLUSIONS DE L'ANALYSE DU RISQUE FOUDRE	9
4.	.1 Systeme de protection contre la foudre (SPF)	9
4.		
5.	DESCRIPTIONS DES INSTALLATIONS	10
5.		
5.	2 BATIMENT D, E, G	
5.	5.3.1 Caractéristiques du réseau de puissance	
	5.3.2 Caractéristiques du réseau de télécommunication	
	5.3.3 Cheminements des réseaux	
	5.3.4 Protection incendie	
5.	4 ZONES A RISQUES D'EXPLOSION	12
5.	5 Installations Pour la Securite	12
6.	PRECONISATIONS - EFFETS DIRECTS DE LA FOUDRE	13
6.	.1 Dispositions generales	13
6.		
6.	3 CHOIX DU TYPE D'I.E.P.F	16
6.		
	6.4.1 Cheminée Biomasse et silos S1 S2 et S3	16
7.	PRÉCONISATIONS - EFFETS INDIRECTS DE LA FOUDRE	22
7.	1 PROTECTION DES COURANTS FORTS	23
	7.1.1 Détermination des caractéristiques des parafoudres type I	23
	7.1.2 Détermination des caractéristiques des parafoudres type II	24
	7.1.3 Raccordement	
_	7.1.4 Dispositif de deconnexion	
/.	2 PROTECTION DES LIGNES DE TELECOMMUNICATION	26
8.	PREVENTION DU PHENOMENE ORAGEUX	27
9.	REALISATION DES TRAVAUX	28
10.	VERIFICATIONS DES INSTALLATIONS	28
10	0.1 Verification initiale	28
	0.2 Verifications periodiques	
10	0.3 VERIFICATIONS SUPPLEMENTAIRES	29
11.	TABLEAU DE SYNTHESE	30

Révision B

Page 4/30

ANNEXES

Annexe 1 : Note de calcul de la distance de séparation

Annexe 2 : Lexique

Révision B

Page 5/30

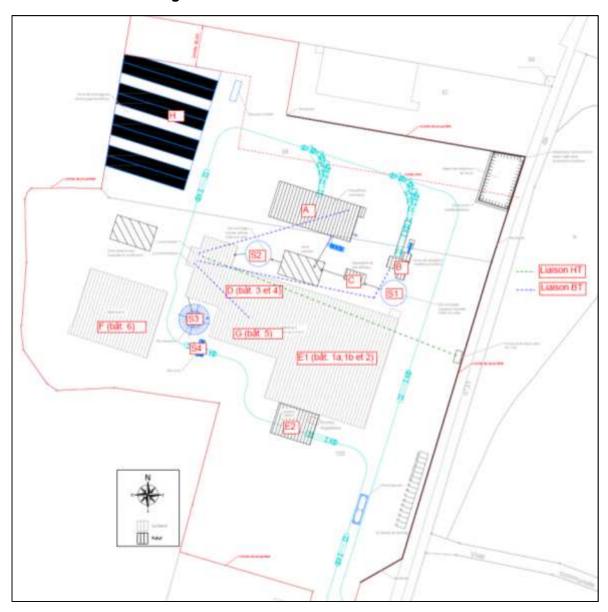
1. INTRODUCTION

1.1 Objet

Le projet de création d'un établissement de production de granulés de bois sur un site existant de la commune de **ROSTRENEN (22)** est soumis à Enregistrement au titre de la législation sur les Installations Classées pour la Protection de l'Environnement, et est soumis à l'arrêté du 19 juillet 2011 et sa circulaire d'application.

L'Etude Technique, objet de ce document est réalisée sur la base des résultats de l'Analyse du Risque Foudre réalisée par **RG Consultant**, détaillés dans le rapport RGC 22055.

L'objectif de l'Etude Technique, véritable cahier des charges, est de détailler les mesures de protection à mettre en œuvre qu'elles soient contre les effets directs (IEPF) ou indirects (IIPF) à savoir :


- > Description des méthodes de conception utilisées pour les IEPF;
- Préconisation des mesures de protection à mettre en œuvre en proposant les solutions les mieux adaptées et les plus rationnelles ;
- Description des protections internes (liaisons équipotentielles, parafoudres);
- > Description des mesures de prévention à mettre en place en cas d'orage.

Révision B

Page 6/30

1.2 Présentation générale du site

Plan n°1 : Plan de masse du projet

Les installations existantes et projetées sont définies comme suit :

- Bâtiments 1a, 1b (1000 m² + 767 m²): Bâtiments destinés au stockage de produits finis,
- Bâtiment 2 (1 000 m²) : Bâtiment destiné au stockage de produits finis,
- Bâtiment 3 (680 m²): Bâtiment destiné au Process granulés de bois,
- Bâtiment 4 (510 m²): Bâtiment destiné au Process granulés de bois,
- **Bâtiment 5** (515 m²): Bâtiment pour atelier, vestiaires et sanitaires.
- Bâtiment 6 (1373 m²): Bâtiment destiné au stockage de produits finis environ 800 m²
- Bâtiment administratif (110 m²).

Révision B

Page 7/30

Les activités enregistrées et déclarées au titre de la législation sur les Installations Classées pour la Protection de l'Environnement sont fixées par un arrêté préfectoral.

Le site est soumis à Enregistrement et Déclaration pour les rubriques suivantes :

N° nomenclature	Libellé de la rubrique	Quantité
1532-D	Bois ou matériaux combustibles analogues y compris les produits finis conditionnés et les produits ou déchets répondant à la définition de la biomasse	<20 000m³
2410-E	Ateliers où l'on travaille le bois ou matériaux combustibles analogues.	>250KW
2910-D	Combustion à l'exclusion des installations visées par les rubriques 2770 et 2771.	<20 MW

Les effets de la foudre présentent des risques de toute nature dont les conséquences sont plus ou moins graves. L'étude de ces risques permet de déterminer les actions à entreprendre pour les minimiser.

Révision B

Page 8/30

2. DOCUMENTS RÈGLEMENTAIRES

2.1 Textes réglementaires

Arrêté du 4 octobre 2010 modifié par l'arrêté du 19 juillet 2011 relatif à la protection contre la foudre de certaines installations classées pour la protection de l'environnement.

Circulaire du 24 avril 2008 relative à l'application de l'arrêté du 19 juillet 2011.

2.2 Normes de références

NF EN 62 305-1 (C 17-100-1) – juin 2006 [Protection des structures contre la foudre – partie 1 : Principes généraux].

NF EN 62 305-2 (C 17-100-2) – novembre 2006 [Protection des structures contre la foudre – partie 2 : Évaluation du risque].

NF EN 62 305-3 (C 17-100-3) – décembre 2006 [Protection des structures contre la foudre – partie 3 : Dommages physiques sur les structures et risques humains].

NF EN 62 305-4 (C 17-100-4) – décembre 2006 [Protection des structures contre la foudre – partie 4 : Réseaux de puissance et de communication dans les structures].

NF C 17-102 – septembre 2011 [Systèmes de protection contre la foudre à dispositif d'amorçage].

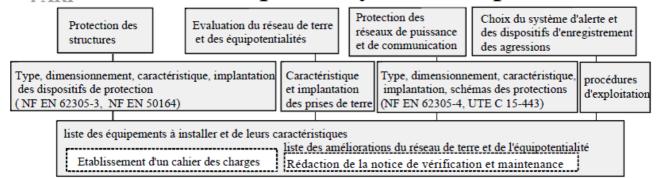
NF C 15-100 – octobre 2010 [Installations électriques basse tension].

Guide UTE C 15-443 – août 2004 [Protection des installations électriques à basse tension contre les surtensions d'origine atmosphérique ou dues à des manœuvres].

NF EN 61 643 - 11 - septembre 2002 [Parafoudres pour installation basse tension].

NF EN 50164 (série) - Composants de protection contre la foudre

Révision B


Page 9/30

3. MÉTHODOLOGIE

3.1 Présentation générale

Le déroulement de l'Étude Technique doit être conforme à la méthodologie développée dans l'Arrêté Ministériel du 19 juillet 2011 et sa circulaire d'application.

Selon l'ARF Etude technique du système de protection

3.2 Limite de l'Étude Technique

L'Étude Technique réglementaire, traitée dans le présent document, ne concerne que le risque de type R1 (perte de vie humaine).

Elle ne concerne pas :

- > les risques de dommages aux matériels électriques et électroniques qui ne mettent pas en danger la vie humaine,
- les risques de pertes de valeurs économiques (risque R4),
- > les risques d'impact relatifs à un dommage physique (incendie/explosion).

Pour ces derniers risques, l'exploitant peut décider de façon purement volontaire d'aller au-delà des exigences réglementaires et mener des analyses de risque foudre complémentaires, voire de protéger une installation de façon déterministe.

4. CONCLUSIONS DE L'ANALYSE DU RISQUE FOUDRE

4.1 Système de protection contre la foudre (SPF)

Structure	Protection effets directs	Protection effets indirects
Bâtiment A	Absence de protection obligatoire	Protection par parafoudres de niveau IV
Bâtiment D, E, G	Absence de protection obligatoire	Protection par parafoudres de niveau IV

Certaines installations seront étudiées de manière déterministe dans cette Etude Technique.

Révision B

Page 10/30

4.2 Mesures de prévention en cas d'orage

L'Analyse du Risque Foudre ne prévoit pas de mesure de prévention particulière à mettre en place en cas d'orage.

5. DESCRIPTIONS DES INSTALLATIONS

5.1 Bâtiment A

Contenu	Chaufferie biomasse et auvent de stockage
Dimension en mètres (L x l x h)	44,00 x 17,90 x 10,00 (cheminée H: 17,50)
Structure	Structure béton, bardage métallique
Danger	Incendie / Surpression
Réseau de terre	Réseau de terre à fond de fouille prévu en cuivre nu 25mm²

5.2 Bâtiment D, E, G

Contenu	Production, stockage, maintenance, bureau, local électrique
Dimension en mètres (L x l x h)	105,45 x 80,20 x 14,80
Structure	Structure et bardage métallique, toiture fibrociment, murs parpaing
Danger	Incendie / Explosion (filtre, broyeur)
Réseau de terre	Non défini à ce jour (inspection impossible)

Révision B

Page 11/30

5.3 Services

5.3.1 Caractéristiques du réseau de puissance

L'établissement sera alimenté en haute tension par le réseau ERDF vers un poste HT/BT abritant un transformateur de puissance inconnue accolé à la façade Ouest du bâtiment D.

Un TGBT accolé au poste HT/BT viendra alimenter l'ensemble des installations électriques du site en souterrain.

Le régime de neutre n'a pas pu être identifié à ce stade de l'étude.

5.3.2 <u>Caractéristiques du réseau de télécommunication</u>

L'établissement est raccordé au réseau France TELECOM au niveau du bâtiment administratif via une ligne aérienne.

Aucune information ne nous a été transmise à ce stade de l'étude sur le cheminement des réseaux de télécommunication sur le site.

5.3.3 Cheminements des réseaux

		Courant Fort		Courant Faible				
Bâtiment	Longueur (m)	Relié à	Туре	Longueur (m)	Relié à	Туре		
Bâtiment A	75	Poste HT/BT	Souterrain	200	Branchement Télécom depuis bâtiment administratif	Souterrain		
Bâtiment D, E, G	134	Poste de livraison HT	Souterrain		Branchement Télécom	Souterrain		
	75	Bâtiment A	Souterrain	400				
	103	Bâtiment B	Souterrain	100	100 depuis bâtiment administratif			
	11	Bâtiment F	Aérien					

Lorsque la longueur d'une section de service est inconnue, on estime que Lc = 1000 m.

5.3.4 Protection incendie

Aucune information ne nous a été transmise à ce stade de l'étude concernant les futures installations de protection contre l'incendie.

Révision B

Page 12/30

5.4 Zones à risques d'explosion

Les installations répertoriées pouvant générer des zones ATEX sont :

- Silo copeaux et sciures sèches,
- Silo de granulés de bois,
- Filtre en Atelier C,
- Broyeur affineur en Hall D,
- Filtre en Hall C.

Le classement de ces zones n'a pas pu être identifié à ce stade de l'étude.

5.5 Installations Pour la Sécurité

Les équipements dont la défaillance entraîne une interruption des moyens de sécurité et provoquant ainsi des conditions aggravantes à un risque d'accident sont à prendre en compte. La liste de ces équipements est la suivante avec leur susceptibilité à la foudre :

Organes de sécurité	Susceptibilité à la foudre
Centrales de détection incendie/intrusion	Oui si existants
RIA	Non
Onduleurs/informatique	Oui si existants
Sondes de température/Infra-rouge/flash	Oui si existants
Automates de sécurité	Oui si existants
Vidéo-surveillance	Oui si existants

Révision B

Page 13/30

6. PRECONISATIONS - EFFETS DIRECTS DE LA FOUDRE

6.1 Dispositions générales

Son rôle est:

- D'intercepter les courants de foudre directs.
- > De conduire les courants de foudre vers la terre.
- > De disperser les courants de foudre dans la terre.

On détermine 2 types de protection : isolée et non isolée.

Dans une IEPF **isolée**, les conducteurs de capture et les descentes sont placées de manière à ce que le trajet du courant de foudre maintienne une distance de séparation adéquate pour éviter les étincelles dangereuses (dans le cas de parois combustibles, de risque d'explosion et d'incendie, de contenus sensibles au champ électromagnétiques de foudre).

Dans une IEPF **non isolée**, les conducteurs de capture et les descentes sont placées de manière à ce que le trajet du courant de foudre puisse être en contact avec la structure à protéger, ce qui est le cas pour la majorité des bâtiments.

6.2 Différents type d'I.E.P.F

Pour le système de capture, deux types de solutions peuvent être envisagés :

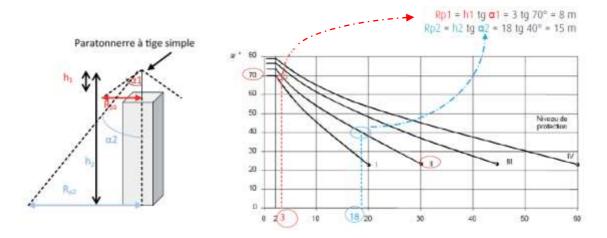
➤ La **protection par système passif** (norme NF EN 62305-3) consistant à répartir sur le bâtiment à protéger : des dispositifs de capture à faible rayon de couverture, des conducteurs de descente et des prises de terre foudre.

Ils peuvent être constitués par une combinaison des composants suivants :

- tiges simples,
- fils tendus,
- cages maillés et/ou composants naturels...

Ces composants doivent être installés aux coins, aux points exposés et sur les rebords suivant 3 méthodes :

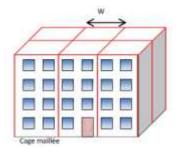
o Tiges simples


Ce type d'installation consiste en la mise en place d'un ou plusieurs paratonnerres à tiges simples, en partie haute des structures à protéger.

L'angle de protection concernant la zone protégée par ces tiges dépend du niveau de protection requis sur le bâtiment concerné et de la hauteur du dispositif de capture au-dessus du volume a protéger.

Révision B

Page 14/30


<u>Détermination de l'angle de protection en fonction de la hauteur de la tige du paratonnerre et du</u> niveau de protection

o Cages maillées

La protection par cage maillée consiste en la réalisation sur le bâtiment d'une cage à mailles reliées à des prises de terre.

Le système à cage maillée répartit l'écoulement des courants de foudre entre les diverses descentes, et ceci d'autant mieux que les mailles sont plus serrées.

La largeur des mailles en toiture et la distance moyenne entre deux descentes dépendent du niveau de protection requis sur le bâtiment.

Niveau de protection Issu de l'ARF	Taille des mailles	Distances typiques entre les conducteurs (W)			
IV	20 m x 20 m	20 m			
Ш	15 m x 15 m	15 m			
ii.	10 m x 10 m	10 m			
1	5 m x 5 m	10 m			

<u>Largeur des mailles et distances habituelles entre les descentes et le ceinturage en fonction du niveau de protection</u>

o Fils tendus

Ce système est composé d'un ou plusieurs conducteurs tendus au-dessus des installations à protéger.

Les conducteurs doivent être reliés à la terre à chacune de leur extrémité.

L'installation de fils tendus doit tenir compte de la tenue mécanique, de la nature de l'installation et des distances d'isolement.

Révision B

Page 15/30

➤ La **protection par système actif** (norme NF C 17-102) avec mise en place de Paratonnerres à Dispositif d'Amorçage (PDA) dont le rayon de couverture est amélioré par un dispositif ionisant.

			Rayon de protection des PDA										
Niveau de protec	tion	I			II		III		IV				
Avance à l'amorç	age	30 45 60		30	45	60	30	45	60	30	45	60	
Hauteur au dessus de la surface à protéger	2	11,4	15,0	18,6	12,6	16,8	20,4	15,0	19,2	23,4	16,8	21,6	25,8
	4	22,8	30,6	37,8	25,8	34,2	41,4	30,6	39,0	46,8	34,2	43,2	51,0
	5	28,8	37,8	47,4	33,0	42,6	51,6	37,8	48,6	58,2	42,6	53,4	64,2
	6	28,8	37,8	47,4	33,0	42,6	52,2	38,4	48,6	58,2	43,2	54,0	64,2

Le tableau ci-dessus tient compte du coefficient de réduction de 40 % appliqué aux rayons de protection des PDA, conformément à l'arrêté du 19 juillet 2011 concernant les ICPE.

Nota : il est également possible de combiner des solutions passives et actives en fonction de la configuration des structures à protéger.

Les avantages et inconvénients de chaque type de protection sont listés dans le tableau suivant :

	Système passif	Système actif (PDA)
Installation	Contraignante sur des structures complexes et pour des niveaux de protection sévères.	Simplifiée car moins de matériels à installer.
Maintenance	Simplifiée, pas d'élément actif à contrôler.	Problème du contrôle du bon fonctionnement de la partie active (accessibilité, moyens de contrôle spécifiques).
Efficacité	Basée sur le modèle électrogéométrique, reconnu internationalement Apporte également une réduction des perturbations électromagnétiques rayonnées	Controversée. En cas de défaillance du système actif la protection devient partielle.
Coût d'installation	Pouvant être élevé sur des structures importantes	Les PDA étant actifs, leur coût est supérieur à celui d'une tige simple. L'installation est cependant moins contraignante, d'où un coût global d'installation moindre.

Révision B

Page 16/30

6.3 Choix du type d'I.E.P.F

Malgré une non-obligation de protection dans l'ARF, la cheminée de la chaufferie biomasse devra être protégée contre les effets directs de la foudre via un **Paratonnerre à Tige Simple** (PTS) de par sa hauteur proéminente.

Les différents silos de grande hauteur pourront également être protégés à titre d'optimisation.

Les solutions proposées dans l'étude technique ont été étudiées en tenant compte du meilleur compromis entre les aspects techniques et économiques.

6.4 Mise en œuvre de l'I.E.P.F

6.4.1 Cheminée Biomasse et silos S1 S2 et S3

6.4.1.1 Niveau de protection à atteindre

La cheminée doit être protégée à titre d'obligation par un **SPF** (Système de Protection Foudre) **de niveau IV**.

Les silos S1 S2 et S3 pourront être protégés <u>à titre d'optimisation</u> par un **SPF** (Système de Protection Foudre) **de niveau IV**.

6.4.1.2 Dispositif de capture

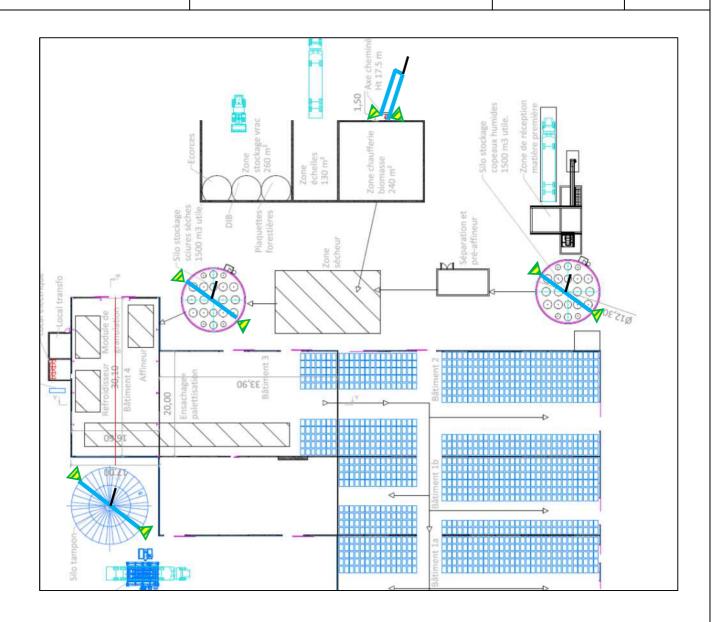
Nous préconisons :

- L'installation de 4 Paratonnerre à pointe simple.

Les caractéristiques du dispositif de capture sont décrites dans le tableau suivant :

Paratonnerre	Hauteur des mâts	Δt	Niveau de protection	Rayon de protection
Installation d'un paratonnerre à pointe simple (PTS) sur la cheminée de chaufferie	2 mètres	/	IV	27,13 m
Installation d'un paratonnerre à pointe simple (PTS) sur chaque silo	2 mètres	/	IV	Silo S3 :29,99 m Silos S1, S2 : 28,16 m

6.4.1.3 Conducteurs de descente


La nature des installations ne permet pas l'utilisation des structures en acier comme conducteur naturel de descente. Deux conducteurs de descente diamétralement opposés devront donc raccorder le paratonnerre aux prises de terre foudre.

La distance de séparation la plus défavorable calculée ici est de : 0,52 m pour la cheminée de chaufferie et 0,75 m pour les silos (le détail du calcul est présenté en annexe 1).

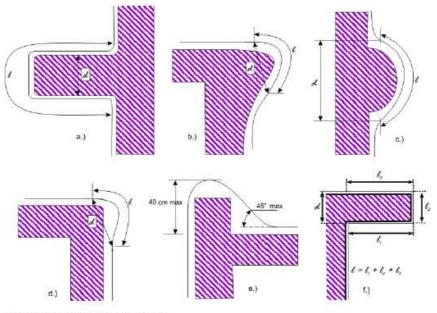


Révision B

Page 17/30

<u>Plan n°2</u>: Protection contre les effets directs de la foudre sur la cheminée de chaufferie et les silos de stockage (Schéma hypothétique)

Révision B


Page 18/30

6.4.1.4 Cheminement des conducteurs de descente

Les conducteurs de descente doivent être installés de sorte que leurs cheminements soient aussi directs et aussi courts que possible, en évitant les angles vifs et les sections ascendantes (les rayons de courbure doivent être supérieurs à 20 cm).

Les conducteurs de descente ne doivent pas cheminer le long des canalisations électriques ou croiser ces dernières.

Il convient d'éviter tout cheminement autour des acrotères, des corniches et plus généralement des obstacles. Une hauteur maximale de 40 cm est admise pour passer au-dessus d'un obstacle avec une pente de 45° ou moins

- ℓ : longueur de la boucle, en mètres
- d : largeur de la boucle, en mètres
- Le risque de rupture du diélectrique est évité si la condition $d > \ell/20$ est respectée.

- Formes de courbure des conducteurs de descente

Les conducteurs de descente doivent être fixés, à raison de <u>trois fixations par mètre</u> (environ tous les 33 cm).

Il convient que ces fixations soient adaptées aux supports et que leur installation n'altère pas l'étanchéité du toit. Les fixations par percements systématiques du conducteur de descente doivent être proscrites.

Tous les conducteurs doivent être connectés entre eux à l'aide de colliers ou raccords de nature identique, de soudures ou d'un brasage.

Il convient de protéger les conducteurs de descente contre tout risque de choc mécanique, à l'aide de fourreaux de protection, jusqu'à une hauteur d'au moins <u>2 m au-dessus du niveau du sol</u>.

Révision B

Page 19/30

6.4.1.5 Matériaux et dimensions

Les matériaux et dimensions des conducteurs de descente devront respecter les prescriptions de la norme NF EN 50164-2.

Le tableau ci-dessous extrait de cette norme donne des exemples de matériau, configuration et section minimale des conducteurs de capture, des tiges et des conducteurs de descente.

Matériau	Configuration	Section minimale
Cuivre, cuivre étamé, acier galvanisé à chaud, acier inoxydable	Plaque pleine (épaisseur min. 2 mm)	50 mm ²
Aluminium	Plaque pleine (épaisseur min. 3 mm)	70 mm ²

6.4.1.6 Joint de contrôle

Chaque conducteur de descente doit être muni d'un joint de contrôle permettant de déconnecter la prise de terre pour procéder à des mesures.

Les joints de contrôle sont en général installés sur les conducteurs de descente en partie basse.

Pour les conducteurs de descente installés sur des parois métalliques ou les SPF non équipés de conducteurs de descente spécifiques, des joints de contrôle doivent être insérés entre chaque prise de terre et l'élément métallique auquel la prise de terre est connectée. Ils sont alors installés à l'intérieur d'un regard de visite (conforme à la NF EN 50164-5) comportant le symbole prise de terre.

6.4.1.7 Compteur de coups de foudre

Un compteur de coups de foudre doit être installé sur le conducteur de descente le plus direct et doit être situé de préférence juste au-dessus du joint de contrôle. Il doit être conforme à la NF EN 50164-6. Il faut au minimum un compteur par paratonnerre.

6.4.1.8 Prise de terre

Vu la difficulté de réaliser une prise de terre de type B (boucle), il y a lieu de prévoir <u>une prise de terre type A au bas de chaque descente.</u>

Au total, 2 prises de terre par PTS devront être créées afin de les relier à la terre.

Les prises de terre doivent satisfaire les exigences suivantes :

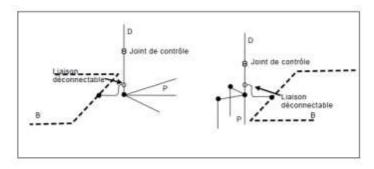
- la valeur de résistance mesurée à l'aide d'un équipement classique doit être la plus basse possible (**inférieure à 10** Ω). Cette résistance doit être mesurée au niveau de la prise de terre isolée de tout autre composant conducteur. L'installateur a donc en charge tous les éventuels travaux complémentaires nécessaires, afin d'obtenir une valeur inférieure à 10 Ohms.
- éviter les prises de terre équipées d'un composant vertical ou horizontal unique excessivement long (> 20 m) afin d'assurer une valeur d'impédance ou d'inductance la plus faible possible.

Révision B

Page 20/30

Deux configurations sont possibles pour réaliser une prise de terre type A :

Patte d'oie


La prise de terre sera disposée sous forme de patte d'oie de grandes dimensions et enterrée à une profondeur minimum de 50 cm à l'aide de conducteurs de même nature et section que les conducteurs de descente, à l'exception de l'aluminium,

Exemple : trois conducteurs de 7 m à 8 m de long, enterrés à l'horizontale, à une profondeur minimum de 50 cm.

Prise de terre ligne ou triangle

Chaque prise de terre type A sera composé de plusieurs électrodes verticales de longueur totale minimum de 5 m à une profondeur minimum de 50 cm :

- disposées en ligne ou en triangle et séparées les unes des autres par une distance égale à au moins la longueur enterrée ;
- interconnectées par un conducteur enterré identique au conducteur de descente ou aux caractéristiques compatibles avec ce dernier.

- conducteurs de descente boucle au niveau des fondations du bâtiment mise à la terre du SPF à dispositif d'amorçage

Schéma de principe « prise de terre »

Les matériaux et dimensions des électrodes de terre devront respectés les prescriptions de la norme NF EN 50164-2.

Le tableau ci-dessous extrait de cette norme donne des exemples de matériau, configuration et dimensions minimales des électrodes de terre.

	Configuration	Dimensions minimales		
Matériau		Électrode de terre	Conducteur de terre	
Cuivre	Torsadé, rond plein, plaquer pleine (épaisseur min. 2 mm)		50 mm ²	
	Rond plein	ø15 mm		
	Tuyau (épaisseur 2 mm)	ø20 mm		
Acier	Rond plein galvanisé	ø 16 mm	ø 10 mm	
	Tube galvanisé	ø 25 mm		
Acier inoxy- dable	Rond plein	ø 15 mm	ø 10 mm	

Révision B

Page 21/30

6.4.1.8 Dispositions complémentaires

Lorsque la résistivité élevée du sol empêche d'obtenir une résistance de prise de terre inférieure à $10~\Omega$ à l'aide des mesures de protection normalisées ci-avant, les dispositions complémentaires suivantes peuvent être utilisées :

- ajout d'un matériau naturel non corrosif de moindre résistivité autour des conducteurs de mise à la terre ;
- ajout d'électrodes de terre à la disposition en forme de patte d'oie ou connexion de ces dernières aux électrodes existantes :
- application d'un enrichisseur de terre conforme à la NF EN 50164-7 ;

Lorsque l'application de toutes les mesures ci-dessus ne permettent pas d'obtenir une valeur de résistance inférieure à $10~\Omega$, il peut être considéré que la prise de terre de Type A assure un écoulement acceptable du courant de foudre lorsqu'elle comprend une longueur totale d'électrode enterrée d'au moins :

- 160 m pour le niveau de protection I;
- 100 m pour les niveaux de protection II, III et IV.

Dans tous les cas, il convient que chaque élément vertical ou horizontal ne dépasse pas 20 m de long.

La longueur nécessaire peut être une combinaison d'électrodes horizontales (longueur cumulée L1) et d'électrodes verticales (longueur cumulée L2) avec l'exigence suivante :

160 (respectivement 100 m) < L1 + 2xL2

6.4.1.9 Equipotentialité des prises de terres

Il convient de connecter les prises de terre du SPF au fond de fouille du bâtiment à l'aide d'un conducteur normalisé (voir NF EN 50164-2) par un dispositif déconnectable situé de préférence dans un regard de visite comportant le symbole « *Prise de terre* ».

6.4.1.10 Condition de proximité

Les composants de la prise de terre du SPF doivent être à au moins **2 m de toute canalisation métallique ou canalisation électrique enterrée** si ces canalisations ne sont pas connectées d'un point de vue électrique à la liaison équipotentielle principale de la structure.

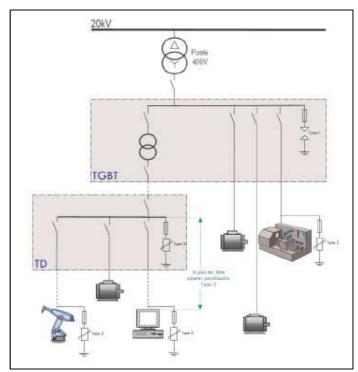
Pour les sols dont la résistivité est supérieure à 500 Ω m, la distance minimum est portée à 5 m

6.4.1.11 Tension de contact et de pas

Pour limiter le phénomène des tensions de pas et de contact à proximité des descentes, le maître d'œuvre doit prévoir l'une des solutions suivantes :

- l'isolation des conducteurs de descente est assurée pour 100 kV, sous une impulsion de choc 1,2/50 µs, par exemple, par une épaisseur minimale de 3 mm en polyéthylène réticulé ;
- des restrictions physiques et/ou des pancartes d'avertissement afin de minimiser la probabilité de toucher les conducteurs de descente, jusqu'à 3 m.

Révision B


Page 22/30

7. PRÉCONISATIONS - EFFETS INDIRECTS DE LA FOUDRE

Les résultats de l'analyse de risque aboutissent à une **protection obligatoire** contre les **effets indirects de niveau IV** sur le projet **APROBOIS** de **Rostrenen** (22).

Une protection devra être mise en place au niveau :

- L'alimentation générale des bâtiments équipés de paratonnerre conformément aux préconisations des normes NF EN 62305 et du guide UTE C 15-443.
- Sur les Équipements Importants Pour la Sécurité.
- Les canalisations conductrices provenant de l'extérieur des bâtiments (équipements en toiture, réseaux électriques,...).

Principe de protection par parafoudres

Nous préconisons :

- La mise en place d'un parafoudre de type 1 au niveau du TGBT;
- La mise en place d'un parafoudre de type 1+2 au niveau de l'armoire générale du bâtiment A:
- La mise en place de parafoudres type 2 au niveau des armoires d'alimentation électrique (non définies à ce stade de l'étude) :
 - De la centrale de détection incendie.
 - De la centrale de détection intrusion.
 - Des sondes de températures/Infra-rouge/flash,
 - Des automates de sécurité,
 - De l'autocommutateur.
 - Du réseau informatique/onduleurs.

Révision B

Page 23/30

- La mise en place de parafoudres téléphoniques au niveau des différentes lignes France TELECOM entrantes sur site (dans le bâtiment administratif) ainsi que sur les éventuelles lignes de <u>reports d'alarme de détections incendie</u> ou <u>lignes pompiers</u>.
- La mise en place de parafoudres téléphoniques au niveau de la ligne entrante dans le bâtiment A.

7.1 Protection des courants forts

7.1.1 <u>Détermination des caractéristiques des parafoudres type l</u>

Ces protections sont conçues pour être utilisées sur des installations où le « risque foudre » est très important, notamment en présence de paratonnerre sur le site. Ces parafoudres doivent être soumis aux essais de classe I, caractérisés par des injections d'ondes de courant de type 10/350 µs, représentatives du courant de foudre généré lors d'un impact direct.

Pour le dimensionnement des parafoudres de **TYPE 1 (TYPE 1+2)**, la norme NF EN 62305 -1 précise que lorsque le courant de foudre s'écoule à la terre, il se divise en 2 :

- ⇒ 50 % vers les prises de terre ;
- ⇒ 50 % dans les éléments conducteurs et les réseaux pénétrant dans la structure.

Calcul du courant l_{imp} des parafoudres de type 1 (et type 1+2) :

Le courant l_{imp} est le courant que doit pouvoir écouler le parafoudre de type 1 sans être détruit.

Les parafoudres protégeant les lignes extérieures doivent avoir une tenue en courant compatible avec les valeurs maximales de la partie de courant de foudre qui va s'écouler à travers ces lignes.

Il dépend de :

 la moitié du courant crête du coup de foudre défini dans la NF EN 62305-1 (donné dans le tableau ci-dessous en fonction du niveau de protection).

Premier choc court				Niveau de	protection	
Paramètres du courant Symbole		Unité	I	II	III	IV
Courant crête	I	kA	200	150	10	00

Tableau n°1 : Valeurs du courant de foudre direct limp maxi

- Du nombre de pôles.

Ce courant est donné par la formule suivante :

$$I_{imp} = \frac{0.5}{n \times m} \times I_{imp} \text{ max}$$

Où n est le nombre total des éléments conducteurs (pôles).

Révision B

Page 24/30

On retrouve ainsi les résultats suivants :

	Niveau de protection				
	Ī	II	III	IV	
	Valeur de I _{imp} mini (en kA)				
IT avec neutre	25,0 18,8 12,5			5	
IT sans neutre	33,3	25,0	16,7		
TN-C	33,3	25,0	16,7		
TN-S (tri + neutre)	25,0	18,8	12,5		
TN-S (mono)	50,0	37,5	25,0		
TT (tri + neutre)	25,0	18,8	12,5		
TT (mono)	50,0	37,5	25,0		

Caractéristiques :

- Régime de neutre : non défini à ce stade du projet
- Tension maximale en régime permanent : Uc = à définir.
- Courant maximum de décharge (onde 10/350 μ s) : I_{imp} = à définir en fonction du régime de neutre
- Niveau de protection : Up = 2,5kV pour un type 1 (Up = 1,5 kV pour un type 1+2)

Ces parafoudres doivent être accompagnés d'un dispositif de déconnexion.

7.1.2 Détermination des caractéristiques des parafoudres type II

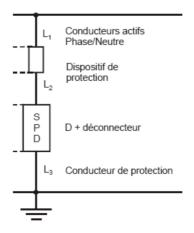
Ces protections sont destinées à être installées à proximité des équipements sensibles. Ces parafoudres sont soumis à des tests en onde de courant 8/20µs (essais de classe II).

Ces parafoudres de type II sont à placer en coordination avec les parafoudres de type I qui sont en amont.

Le parafoudre installé dans l'armoire sprinkler devra être déposé, et remplacé par un parafoudre Tétrapolaire, installé en aval du disjoncteur général de l'armoire, et répondant aux caractéristiques suivantes :

<u>Caractéristiques:</u>

- Régime de neutre : non défini à ce stade du projet
- Tension maximale en régime permanent Uc = 400 V
- Courant nominal de décharge (onde 8/20 µs) In = 20 kA
- Courant maximum de décharge (onde 8/20 μs) Imax = 40 kA
- Niveau de protection Up = 1,5 kV (pour tous les régimes sauf IT)


Révision B

Page 25/30

7.1.3 Raccordement

Les parafoudres seront raccordés au niveau du jeu de barres principal de l'armoire.

Le raccordement devra être réalisé de la manière la plus courte et la plus rectiligne possible afin de réduire la surface de boucle générée par le montage des câbles phases, neutre et PE. La longueur cumulée de conducteurs parallèles de raccordement du parafoudre au réseau devra être strictement inférieure à 0,50 m (L1+L2+L3).

La mise en œuvre doit être réalisée conformément au guide UTE C 15-443.

7.1.4 Dispositif de deconnexion

Il est prévu un dispositif de protection contre les courants de défaut et les surintensités (Fusibles HPC, disjoncteur...). Ce dispositif sera dimensionné par l'installateur (note de calculs à l'appui). Afin de privilégier la continuité des installations électriques, les dispositifs de protection des parafoudres respecteront les règles de sélectivité.

Le dispositif de protection devra permettre une bonne tenue aux chocs de foudre, ainsi qu'une résistance aux courants de court-circuit adaptée et devra garantir la protection contre les contacts indirects après destruction du parafoudre. Une signalisation par voyant mécanique indique le défaut et un contact inverseur permet d'assurer le report d'alarme à distance.

L'installeur devra dimensionner le dispositif de protection en fonction du guide INERIS « Choix et installation des déconnecteurs pour les parafoudres BT de Type 1 » et des recommandations des fabricants de parafoudres.

Révision B

Page 26/30

7.2 Protection des lignes de télécommunication

Ces parafoudres sont structurés par les normes internationales NF EN 61643-21 et -22.

Ils sont adaptés aux exigences des différents réseaux entrant dans la structure à protéger :

- Réseau **Telecom**: protection des équipements PABX, modems, terminaux, ...
- Réseau industriel : protection d'automates, systèmes de télégestion, télétransmetteurs, sondes, capteurs, servomoteurs, centrales de contrôle d'accès, d'incendie, ...
- Réseau informatique : protection des réseaux inter-bâtiment

Le tableau E.2 de l'annexe E de la NF EN 62305 -1 donne, pour les réseaux de **communication**, les surintensités de foudre susceptibles d'apparaître lors des impacts de foudre.

Le courant impulsionnel de foudre (limp – onde $10/350 \mu s$) des parafoudres doit être > ou = aux valeurs reprises ci-dessous en fonction des niveaux de protection.

Niveau de protection Np		
I-II III-IV		
limp minimum du parafoudre		
(enkA) en onde 10/350 μs		
2 1		

Pour les réseaux écrantés, ces valeurs peuvent être réduites d'un facteur 0,5.

Pour la **sélection** de ces parafoudres, il faut tenir compte des paramètres suivants :

- Caractéristiques de la ligne à protéger : ISDN, ADSL
- Nombre de lignes à protéger
- Type d'installation souhaitée : boitier mural, répartiteur, rail DIN,...
- Ergonomie : modules débrochables.

Révision B

Page 27/30

8. PREVENTION DU PHENOMENE ORAGEUX

Cette étude évoque également l'aspect <u>prévention</u> vis-à-vis des risques foudre en présence de personnel exposé aux orages ou lors de manipulation de produits et/ou matériels dangereux.

Selon l'arrêté du 19 juillet 2011, « les enregistrements des agressions de la foudre sont datés et si possible localisés sur le site », et « tous les événements survenus dans l'installation de protection foudre (... coup de foudre...) sont consignés dans le carnet de bord ».

Pour permettre de manière fiable de faire évacuer les zones ouvertes, le système d'alerte, à l'approche d'un front orageux, peut être :

 soit un service local de détection des orages et/ou fronts orageux par réseau national METEOFRANCE,

• soit un système local de détection par moulin à champ type Détectstorm ou équivalent.

En effet, lors de l'approche ou de la formation d'une cellule orageuse, le champ électrostatique au sol varie de façon importante (de 150 V/m à 15kV/m en période orageuse).

Un dispositif (moulin à champ) mesure localement cette variation et informe le décideur sur la façon de gérer cette situation à risque.

Une fiche d'enregistrement pour chaque appel sera remplie et les datations du début et de fin d'alerte précisées. Une procédure sera alors mise en place et tout dépotage interdit jusqu'à la levée de l'alerte.

Cette procédure d'alerte foudre devra être régulièrement effectuée (nombre important de fiches remplies par an) par liaison téléphonique rendant pratiquement nulle la probabilité d'inflammation de zones explosibles sur l'aire de déchargement.

Ces fiches remplies régulièrement apporteront une bonne traçabilité des évènements utiles lors d'investigations nécessaires après d'éventuels dysfonctionnements rencontrés. En cas de sinistres graves, ces éléments apportent une aide précieuse lors d'une enquête administrative ou judiciaire.

Conclusion:

En absence de dépotage de produits dangereux, un système de détection d'orages alertant l'arrivée potentielle de la foudre est inutile.

Révision B

Page 28/30

9. REALISATION DES TRAVAUX

La mise en œuvre des préconisations doit être réalisée par une société spécialisée et agréée **Qualifoudre** « Installation de paratonnerres et parafoudres ».

La qualité de l'installation des systèmes de protection est essentielle pour assurer une efficacité de la protection foudre. L'entreprise devra fournir son attestation Qualifoudre à la remise de son offre.

La marque Qualifoudre:

La marque QUALIFOUDRE identifie les sociétés compétentes dans le domaine de la foudre. Il est attribué depuis 2004 aux fabricants, aux bureaux d'études, aux installateurs et aux vérificateurs d'installations de protection.

Le label QUALIFOUDRE permet aux professionnels de la foudre de répondre aux exigences réglementaires de l'arrêté du 4 octobre 2010 modifié par l'arrêté du 19 juillet 2011 (JOE du 5 aout 2011).

10. VERIFICATIONS DES INSTALLATIONS

10.1 Vérification initiale

Dès la réalisation d'une installation de protection contre la foudre, une vérification finale destinée à s'assurer que l'installation est conforme aux normes doit être faite avant 6 mois et comporter :

- Nature, section et dimensions des organes de capture et de descente,
- · Cheminement de ces différents organes,
- Fixation mécanique des conducteurs,
- Respect des distances de séparation,
- Existence de liaisons équipotentielles,
- Valeurs des résistances des prises de terre (par le maître d'œuvre),
- Etat de bon fonctionnement des têtes ionisantes pour les PDA (éventuels).
- Interconnexion des prises de terre entre elles.
- Vérification des parafoudres (câblage, section,..).

Pour certaines, ces vérifications sont visuelles. Pour les autres, il faudra s'assurer des continuités électriques par des mesures (maître d'œuvre).

Le maître d'œuvre devra, au préalable, mettre à la disposition de l'inspecteur réalisant la vérification le dossier d'ouvrage exécuté (D.O.E.) correspondant aux travaux réalisés par ses soins : cheminements des liaisons de masses, implantation des parafoudres dans les armoires respectant toutes les recommandations de l'Etude Technique.

Révision B

Page 29/30

10.2 Vérifications périodiques

La NF EN 62 305-3 prévoit des vérifications périodiques en fonction du niveau de protection à mettre en œuvre sur la structure à <u>protéger en présence de protection extérieure</u> :

Niveau de protection	Inspection visuelle (année)	Inspection complète (année)	Inspection complète des systèmes critiques (année)	
l et II	1	2	1	
III et IV	2	4	1	
NOTE Pour les structures avec risque d'explosion, une inspection complète est suggérée tous les 6 mois. Il convient d'effectuer des essais une fois par an.				
Une exception acceptable à l'essai annuel peut être un cycle de 14 à 15 mois lorsqu'il est considéré avantageux d'effectuer des mesures de prise de terre en diverses saisons.				

D'après NF EN 62 305-3

Les intervalles entre vérifications donnés dans le tableau ci-dessus s'appliquent dans le cas où il n'existe pas de texte réglementaire de juridiction. Or, pour le cas du **projet APROBOIS** situé à **Rostrenen (22)**, l'arrêté du 19 juillet 2011 précise que la vérification visuelle doit être réalisée tous les ans et la vérification complète tous les deux ans.

Chaque vérification périodique doit faire l'objet d'un rapport détaillé reprenant l'ensemble des constatations et précisant les mesures correctives à prendre. Lorsqu'une vérification périodique fait apparaître des défauts dans le système de protection contre la foudre, il convient d'y remédier dans les meilleurs délais afin de maintenir l'efficacité optimale du système de protection contre la foudre.

Note importante :

Les parafoudres sont des composants passifs que l'on finit souvent par oublier et sont rarement intégrés dans les opérations de maintenance des installations électriques.

Comment savoir si une surcharge ou des amorçages trop fréquents n'ont pas eu d'incidences sur le bon fonctionnement des parafoudres installés ?

Si une démarche de vérification est mise en place, elle devra comporter une mission de contrôle de l'état des modules à l'aide de valise test (valise CHECKmaster ou équivalent) avec affichage des résultats des essais et raccordement par interface sur imprimante et PC pour exploiter les données et les incorporer au dossier « maintenance foudre ».

10.3 Vérifications supplémentaires

Dans le cadre de l'application de la norme NF EN 62305-3, des vérifications supplémentaires des installations de protection contre la foudre peuvent être réalisées suite aux événements suivants :

- · Travaux d'agrandissement du site,
- Forte période orageuse dans la région,
- Impact sur les installations protégées (procédure de vérification des compteurs de coups de foudre et établissement d'un historique),
- Impossibilité d'installer un système de comptage efficace, dès qu'un doute existe après une activité locale orageuse,
- Perturbations sur des contrôles/commandes ont été constatées, alors une vérification de l'état des dispositifs de protection contre les surtensions est nécessaire.

<u>Toutes ces vérifications devront être annotées dans un carnet de bord mis à disposition du vérificateur, inspecteur, etc.</u>

Révision B

Page 30/30

11. TABLEAU DE SYNTHESE

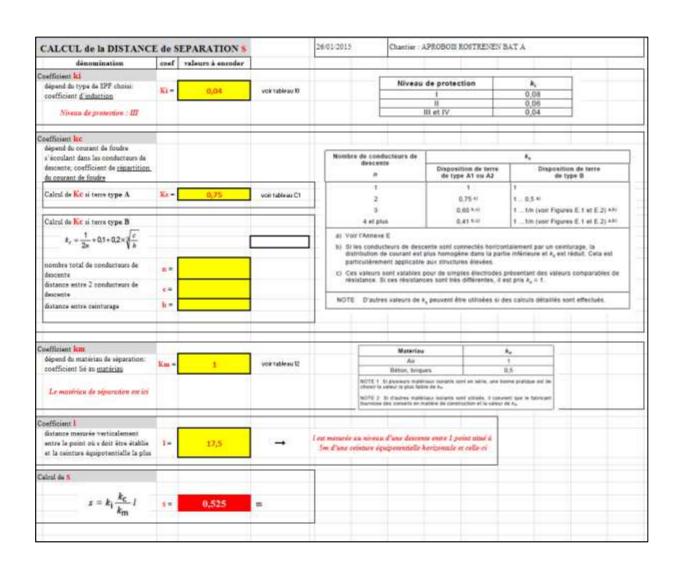
Installations/ équipements	Préconisations (effets directs et indirects)	Obligation	Optimisation
<u>I.E.P.F.</u>	Installation Extérieure de Protection Foudre		
Bâtiment A	Installation d' 1 PTS de niveau IV, conformément au § 6 de cette Etude Technique sur la cheminée de chaufferie et raccordée à deux prises de terre foudre,	Х	
Silos S1, S2 S3	Installation de 1 PTS de niveau IV , conformément au § 6 de cette Etude Technique sur chaque silo et raccordée à deux prises de terre foudre,		х
<u>I.I.P.F.</u>			
TGBT	Installation Intérieure de Protection Foudre		
AD Bâtiment A	Mise en place de parafoudres type 1 de niveau IV : onde 10/350 μs, conformément au § 7 de cette étude technique.	X	
Tableaux divisionnaires	Mise en place de parafoudres type 1+2 de niveau IV : onde 10/350 μs, conformément au § 7 de cette étude technique.	Х	
Lignes de télécommunication, report d'alarme et ligne secours	Protection par parafoudres type 2 (caractéristiques : onde 8/20 Imax 40 kA et Up < 1,5 kV) conformément au § 7 de cette étude technique : - la centrale de détection incendie, - la centrale de détection intrusion, - les sondes de températures/Infra-rouge/flash, - Les automates de sécurité, - l'autocommutateur, - le réseau informatique/onduleurs,	X X X X	X X
Prévention Personnel	Protection par parafoudres courant faible adaptés, conformément au § 7 de cette étude technique/ - lignes d'entrée France TELECOM, - Ligne d'entrée bâtiment A, - Lignes de report d'alarme et de secours,	X X	х
	Procédure à respecter en période orageuse, alerte foudre : - soit par un système autonome local type moulin à champ, Détectstorm ou équivalent		Х
	 soit par un abonnement annuel à un service national de détection de front orageux, avertissant les services concernés que le risque d'orage sur la zone est élevé (Météorage). 		х
	 Télé comptage (Météorage) 		X
(en cas de travaux)	Vérification initiale des travaux (REC) Vérification périodique Visuelle Vérification périodique Complète	X X X	

Révision B

Annexe

1

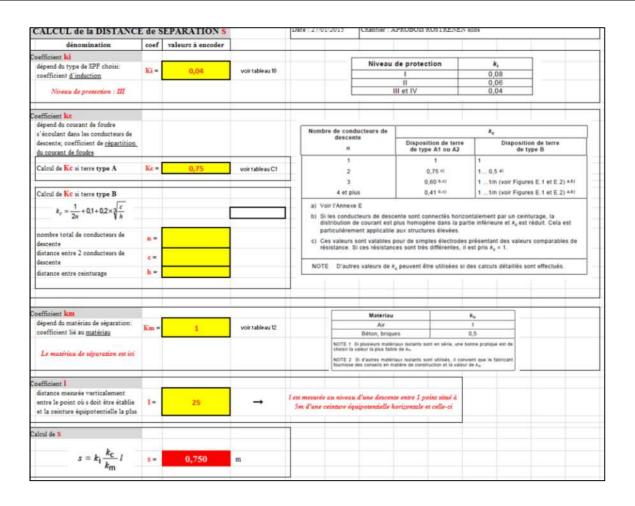
ANNEXE 1


Note de calcul distance de séparation

Révision B

Annexe

1



Révision B

Annexe

1

Révision B

Annexe

2

ANNEXE 2

Lexique

Révision B

Annexe

2

Armatures d'acier interconnectées	Armatures d'acier à l'intérieur d'une structure, considérées comme assurant une continuité électrique.
Barre d'équipotentialité	Barre permettant de relier à l'installation de protection contre la foudre les équipements métalliques, les masses, les lignes électriques et de télécommunications et d'autres câbles.
Borne ou barrette de coupure	Dispositif conçu et placé de manière à faciliter les essais et mesures électriques des éléments de l'installation de protection contre la foudre.
Conducteur (masse) de référence	Système de conducteurs servant de référence de potentiel à d'autres conducteurs. On parle souvent du "zéro volt".
Conducteur d'équipotentialité	Conducteur permettant d'assurer l'équipotentialité.
Conducteur de descente	Conducteur chargé d'écouler à la terre le courant d'un coup de foudre direct. Il relie le dispositif de capture au réseau de terre.
Conducteur de protection (PE)	Conducteur destiné à relier les masses pour garantir la sécurité des personnes contre les chocs électriques.
Coup de foudre	Impact simple ou multiple de la foudre au sol.
Coup de foudre direct	Impact qui frappe directement la structure ou son installation de protection contre la foudre.
Coup de foudre indirect	Impact qui frappe à proximité de la structure et entraînant des effets conduits et induits dans et vers la structure.
Couplage	Mode de transmission d'une perturbation électromagnétique de la source à un circuit victime.
Dispositif de capture	Partie de l'installation extérieure de protection contre la foudre destinée à capter les coups de foudre directs.
Distance de séparation	Distance minimale entre deux éléments conducteurs à l'intérieur de l'espace à protéger, telle qu'aucune étincelle dangereuse ne puisse se produire entre eux.
Effet de couronne ou Corona	Ensemble des phénomènes d'ionisation liés au champ

électrique au voisinage d'un conducteur ou d'une pointe.

Révision B

Annexe

2

Effet réducteur

Réduction des perturbations HF par la proximité du conducteur victime avec la masse. L'effet réducteur est le rapport de l'amplitude de la perturbation collectée par un câble non blindé ou loin des masses à celle collectée par le même câble blindé ou installé contre un conducteur de masse.

Electrode de terre

Elément ou ensemble d'éléments de la prise de terre assurant un contact électrique direct avec la terre et dissipant le courant de décharge atmosphérique dans cette dernière.

Equipements métalliques

Eléments métalliques répartis dans l'espace à protéger, pouvant écouler une partie du courant de décharge atmosphérique tels que canalisations, escaliers, guides d'ascenseur, conduits de ventilation, de chauffage et d'air conditionné, armatures d'acier interconnectées.

Etincelle dangereuse (étincelage)

Décharge électrique inadmissible, provoquée par le courant de décharge atmosphérique à l'intérieur du volume à protéger.

Foudre

Décharge électrique aérienne, accompagnée d'une vive lumière (éclair) et d'une violente détonation (tonnerre).

Installation de Protection contre la Foudre (I.P.F.)

Installation complète, permettant de protéger une structure contre les effets de la foudre. Elle comprend à la fois une installation extérieure (I.E.P.F.) et une installation intérieure de protection contre la foudre (I.I.P.F.)

Liaison équipotentielle

Eléments d'une installation réduisant les différences de potentiels entre masse et élément conducteur.

Mode commun (MC)

Un courant de mode commun circule dans le même sens sur tous les conducteurs d'un câble. La différence de potentiels (d.d.p.) de MC d'un câble est celle entre le potentiel moyen de ses conducteurs et la masse. Le mode commun est aussi appelé mode longitudinal parallèle ou asymétrique.

Mode différentiel (MD)

Un courant de mode différentiel circule en opposition de phase sur les deux fils d'une liaison filaire, il ne se referme donc pas dans les masse. Une différence de potentiels (d.d.p.) de MD se mesure entre le conducteur signal et son retour. Le mode différentiel est aussi appelé mode normal, symétrique ou série.

Révision B

Annexe

2

Niveau de protection

Terme de classification d'une installation de protection contre la foudre exprimant son efficacité.

Parafoudre ou parasurtenseur

Dispositif destiné à limiter les surtensions transitoires et à dériver les ondes de courant entre deux éléments à l'intérieur de l'espace à protéger, tels que les éclateurs ou les dispositifs semi-conducteurs.

Paratonnerre

Appareil destiné à préserver les bâtiments contre les effets directs de la foudre.

P.D.A

Paratonnerre équipé d'un système électrique ou électronique générant une avance à l'amorçage. Ce gain moyen s'exprime en microseconde.

Point d'impact

Point où un coup de foudre frappe la terre, une structure ou une installation de protection contre la foudre.

Prise de terre

Partie de l'installation extérieure de protection contre la foudre destinée à conduire et à dissiper le courant de décharge atmosphérique à la terre.

Régime de neutre

Il caractérise le mode de raccordement à la terre du neutre du secondaire du transformateur source et les moyens de mise à la terre des masses de l'installation. Il est défini par deux lettres:

 La première indique la position du neutre par rapport à la terre:

I: neutre isolé ou relié à la terre à travers une impédance T: neutre directement à la terre

 La deuxième précise la nature de la liaison masseterre:

T: masses reliées directement à la terre (en général à une prise de terre distincte de celle du neutre)

N: masses reliées au point neutre, soit par l'intermédiaire d'un conducteur de protection lui-même relié à la prise de terre du neutre (**N-S**), soit par l'intermédiaire du conducteur de neutre lui-même (**N-C**).

Réseau de masse

Ensemble des conducteurs d'un site reliés entre eux. Il se compose habituellement des conducteurs de protection, des bâtis, des chemins de câbles, des canalisations et des structures métalliques.

Réseau de terre

Ensemble des conducteurs enterrés servant à écouler dans la terre les courants externes en mode commun. Un réseau de terre doit être unique, équipotentiel et maillé.

Révision B

Annexe

2

Résistance de terre Résistance entre un réseau de terre et un "point de

référence suffisamment éloigné". Exprimée en Ohms (Ω) , elle n'a pas, contrairement au maillage des masses,

d'influence sur l'équipotentialité du site.

Surface équivalente Surface de sol plat qui recevrait le même nombre

d'impacts que la structure ou le bâtiment en question. Cette surface est toujours plus grande que la seule emprise au sol de l'ensemble à protéger. On la détermine en pratique en entourant fictivement le périmètre de cet ensemble par une bande horizontale, dont la largeur est égale à trois fois sa hauteur. Elle peut ensuite être corrigée en tenant compte des objets environnants : arbres, autres structures, susceptibles de dévier un coup

de foudre vers eux.

Surtension Variation importante de faible durée de la tension.

Tension de mode commun Tension mesurée entre deux fils interconnectés et un

potentiel de référence (voir mode commun).

Tension différentielle Tension mesurée entre deux fils actifs (voir mode

différentiel).

Tension résiduelle d'un parafoudre Tension qui apparaît sur une sortie d'un parafoudre

pendant le passage du courant de décharge.

TGBT Tableau Général Basse Tension

Traceur Predécharge progressant à travers l'air et formant un

canal faiblement ionisé.